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a b s t r a c t

The Markov chain method is developed for polarized radiative transfer in a pseudo-
spherical atmosphere with solar illumination. This solution is then used as an initial
guess of the radiation field for a spherical atmosphere. By use of the short characteristic
method, a convergent radiation field throughout the atmosphere is achieved after a few
Picard iterations. We verified this hybrid method by comparing numerical results to
those obtained by a backward Monte Carlo calculation. We carried out a demonstration
calculation by simulating the Titan haze reflected intensity I and Stokes parameter Q, and
degree of linear polarization at 934.8 nm wavelength. Comparison of the I and Q images
to those measured by the Imaging Science Subsystem instrument on the Cassini
spacecraft shows the hybrid method to be useful for radiative transfer analyses for (both
optically and physically) thick spherical atmospheres.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Retrievals of planetary atmosphere and surface proper-
ties from photometric and polarimetric data requires a
reliable radiative transfer (RT) model for radiance and
polarization computation. To ensure accuracy of the for-
ward computation of the limb radiance and to constrain
the solution including linear polarization, a polarized
radiative transfer model that accounts for atmospheric
sphericity and radial inhomogeneity is required. Compared
to the variety of numerical methods available for plane-
parallel geometry, numerical solutions for the spherical
atmosphere are very limited due to the more complex
2-dimensional (2D) nature of the spatial RT problem.

By partially accounting for the spherical geometry,
some approximate methods have been studied for the
2D RT. For example, a pseudo-spherical solution was

developed [1] by accounting for the incident solar beam
attenuation and single scattering in full spherical geome-
try and then retaining the assumption of a segmented
plane-parallel structure for multiple scattering. For ozone
retrieval using ultraviolet radiance, such a solution was
reported [2,3] to have small errors as the viewing angle
gets close to nadir viewing angles at high Sun condition.
However, considerable error occurs at limb viewing
angles for low solar illumination, which leads to large
uncertainties in the aerosol retrieved from limb radiance.
For some planets of large atmosphere-thickness-to-pla-
net-radius ratio (which can be 500/2576 for Titan), the
limb or terminator radiance errors of the pseudo-
spherical approximation are even more obvious than that
for Earth (E100/6371). Indeed, the increased curvature of
planet and atmosphere impedes the application of
pseudo-spherical solutions [2–4] to Titan’s atmosphere
in their present form. However, the pseudo-spherical
solutions can be used to initialize the accurate iterative
solutions to RT in a spherical atmosphere.

To account for the atmospheric sphericity in an exact
way, the forward or backward Monte Carlo method has
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been applied to Earth and planetary atmospheres [5–7].
In terms of computational efficiency, however, the deter-
ministic methods, e.g. successive orders of scattering [8],
Gauss–Seidel iteration [9,10], and Picard iteration (or
Lambda iteration) [11,12] have advantages. Of high rele-
vancy to our work is the Picard iteration scheme based on
the long characteristic method (LCM) or the short char-
acteristic method (SCM). In the LCM [13], the intersection
point of a characteristic line with the atmosphere bound-
ary is taken as the reference point and the radiation field
at a current grid point is obtained by calculating recur-
sively the radiation field at the intersection points of the
characteristic line with all spherical interfaces. Such a
method was adopted to study the radiative transfer in
Titan’s atmosphere overlying a Lambertian surface [14].
To improve the convergence the SCM was proposed [15],
which differs from the LCM in that during the inward/
outward recurrence the intersections of the characteristic
lines with outer/inner interfaces of a sub-layer are taken
as the reference points. This way the multiple scattering
component of the radiation field at the reference point is
updated during the recurrence. Starting with a proper
initial guess of the radiation field throughout the atmo-
sphere, the convergent solution is expected to be obtained
in a few iterations.

This paper aims to extend the SCM-based Picard
iteration for polarized radiative transfer in a spherical-
shell atmosphere overlying a polarizing or depolarizing
planetary surface (the term ‘‘spherical-shell atmosphere’’
means that the atmospheric properties vary only along
the radial direction and are modeled as a collection of
homogeneous spherical shells). In Section 2 we give the
Markov chain formalism for calculating the radiation field
inside the plane-parallel atmosphere, and then give the
correction to get the pseudo-spherical solution. Initialized
by the pseudo-spherical solution the SCM-based Picard
iteration scheme is described in Section 3 to get an
accurate solution to the full-spherical atmosphere. In
Section 4, our method is verified through comparing its
numerical results to those obtained by the Monte Carlo
method and then demonstrated by comparison of simu-
lated and real intensity and polarization images of Titan’s
haze. A summary and outline of future work is given in
Section 5.

2. Markov chain formulation of polarized radiative
transfer

The Markov chain method was initially proposed to
compute scalar radiative transfer in a plane-parallel
atmosphere [16,17]. With the implementation of a
‘‘chain-to-chain adding strategy’’, its application in
computing radiative transfer through Venus’ atmo-
sphere shows higher computation efficiency than that
of adding/doubling method [17]. Though the total field
is most generally obtained through a matrix inverse
operation, the Markov Chain RT formalism can be cast
in terms of the contributions of different orders of
scattering [16]. Since the inverse matrix is independent
of the solar incidence angle, the radiation field along
different radial lines in a spherical atmosphere can be

initialized immediately. Based on its characteristic
basis in matrix algebra, the Markov Chain method
lends itself readily to implementation on a graphics
processing unit (GPU) for future high-speed com-
putations. Moreover, it can be extended to three-
dimensional radiative transfer problems because, like
the Monte Carlo method, it deals directly with prob-
abilities of transition between states in transport space
(position, direction).

2.1. Plane-parallel atmosphere

Assume that a vertically inhomogeneous plane-parallel
atmosphere of optical depth t0 is divided into N!1 atmo-
spheric sub-layers so that each one has the optical thickness
Dtn¼tnþ1!tn (1rnrN!1) and tN¼t0. Further assuming
the Nth layer to be the reflecting surface, it has no thickness
so that DtN¼0. The light direction is described by the zenith
and azimuth angles n,f respectively. Following Chandrase-
khar’s convention [18], the incident solar flux is pF. The
light propagation direction within the atmosphere is dis-
cretized into Nm angles over the range 0rmr1, where
m¼9u9¼9cos n9, and n is the angle of propagation relative to
the downward normal. After a Fourier series expansion in
the difference between the view and incident azimuthal
angles, f–f0, the ‘‘state’’ of the radiant energy deposited in
each Fourier mode is described by its location layer (indexed
by n) and its direction of propagation ui. In the Markov chain
method, the transition probability from one state (n, ui) to
another (n0, uj) is given by the transition matrix Q and the
distribution of initial states (from single scattering) is
denoted by P0. To specify the dimension of the matrix used
in the Markov chain formalism, we define ND¼N $
Nm $Nd $Nm $NStokes where Nm is the number of Fourier series
modes which can be cosine (denoted by subscript ‘‘c’’) or
sine (‘‘s’’) so that Nm¼2, Nd is the light propagation direction
which can be upwelling or downwelling so that Nd¼2, and
the dimension number for Stokes vector represented by the
column vector [I, Q, U, V]T is NStokes¼4. Defining the Stokes
vector with respect to the meridian plane, the radiation
field inside the atmosphere (or ‘‘internal field’’) is then
expressed independently for each azimuthal component m
as a consequence of matrix operations on the matrix PðmÞ0 of
dimension ND'Nm and the matrix Q ðmÞ of dimension
ND'ND [19,20]:

IðmÞin ¼ E!Q ðmÞ
! "!1

PðmÞ0 ð1Þ

where E is the identity matrix of dimension ND'ND, and
the solution vector IðmÞin of dimension ND'1 is formed by the
cosine mode (IðmÞin,c) and sine mode (IðmÞin,s) of the Fourier
component of the radiation field emergent from an atmo-
spheric layer due to the extinction and scattering processes
in it. With IðmÞin,c=sdetermined from Eq. (1), the diffuse radia-
tion field emergent from nth layer in direction uj is

Iin Dtn,uj,u0,f!f0

# $

¼
X1

m ¼ 0

2!d0mð Þ
2wjmj

IðmÞin,c Dtn,uj,u0
# $

cos m f!f0

# $h

þIðmÞin,s Dtn,uj,u0
# $

sin m f!f0

# $i
, ð2Þ
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where d0m is the Kronecker delta symbol and wj is the
quadrature weight at mj. Calculation of all matrices was given
previously [19,20]. Note that the radiation field obtained
from Eqs. (1) and (2) is at the Nm discretized angles. To
accurately evaluate the radiation field at arbitrary viewing
and incidence angles, Eq. (1) has to be generalized to be

IðmÞin ¼Q ðmÞv E!Q ðmÞ
! "!1

PðmÞ,i0 þPðmÞ,i0,v ð3Þ

where the matrices Q ðmÞv , PðmÞ,i0 , and PðmÞ,i0,v have the dimen-
sions Nv'ND, ND'Ninc and Nv'Ninc respectively,
with Ninc being the number of incidence angles and
Nv¼N $Nm $Nd $Nview $NStokes, with Nview being the number
of viewing angles. Their computation differs from the com-
putation of Q ðmÞ and PðmÞ0 by using the cosines of the given
viewing and/or incidence angles.

The total radiation field emergent from the boundaries
of the nth layer is a sum over the contribution from all
upper or lower layers, namely

I!in tnþ1,mj,m0,f!f0

! "
¼
Xn

k ¼ 1

Iin Dtk,mj,m0,f!f0

! "

'c Dtk,mj

! "
exp½! tn!tkð Þ=mj),

ð4Þ

for downwelling (‘‘! ’’) light, and

Iþin tn,mj,m0,f!f0

! "
¼
XN

k ¼ n

Iin Dtk,!mj,m0,f!f0

! "

'c Dtk,mj

! "
exp½! tk!tnð Þ=mj) ð5Þ

for upwelling (‘‘þ ’’) light. Note that Eqs. (1) and (3) are
based on a constant source function assumption through-
out a sub-layer, and the correction factor c(Dtk, mj) in
Eqs. (4) and (5) is introduced to get the radiance emergent
from the layer boundaries:

c Dtk,mj

! "
¼

mj

Dtk
1!exp ! Dtk

mj

! "h i
, krN!1

1, k¼N:

8
<

: ð6Þ

As an important characteristic of the Markov chain
method, the matrix inverse (E!Q(m))!1 is invariant to
incident light profiles. This means that, once the matrix
inverse is determined, the radiation field for different
incidence angles (or more specifically, for different initial
distributions of light in the atmosphere, P0

0s) can be
obtained in an efficient way. This greatly improves the
speed of computing the radiation field along different
radial lines in a pseudo-spherical atmosphere since only
solar incidence angle changes for different sets of plane-
parallel atmosphere systems set up along the radial lines.

2.2. Pseudo-spherical atmosphere

In a spherical atmosphere, the radial, angular and
azimuthal coordinates R, Y and F are used as global
coordinates to specify a point with the position vector R
with R/R¼(sin Y cos F, sin Y sin F, cos Y). Dividing the
atmosphere into N–1 layers, setting the Nth layer to be
the planetary surface, and discretizing Y into NY radial
lines in the domain 0rYr1801 and F into NF azimuthal
planes in the domain 0rFr3601, the atmosphere has

N $NY $NF grid points, each one specified by (Rn, Yj, Fk)
where 1rnrN, 1r jrNY and 1rkrNF. In the sphe-
rical shell approximation the atmospheric properties are
considered to be a function only of the layer number n.
Then the single scattering albedo (SSA) o0(R)Ro0(n), the
extinction coefficient s(R)Rs(n), and the phase matrix
M(XG, XG,0; R)RM(XG, XG,0; n), where XG,0 denotes
the Sun direction in global spherical coordinate system
(R, Y, F). Setting the OZ axis of the global coordinate
system oriented toward the Sun (see Fig. 1), we have
XG,0¼[0, 0, –1]T and the radiation field for solar illumination
has cylindrical symmetry so that the F coordinate in the
global coordinate system is not needed.

To specify the direction of diffuse light in local sphe-
rical coordinate system set up at each grid point, the
angular coordinates y and f are used as the local viewing
and azimuthal angles (see Fig. 1) so that the direction in
local coordinate system is XL¼(sin y cos f, sin y sin f,
cos y)T and f¼0 and p denote the local principal plane
containing the direction of the solar beam and the surface
normal at the grid point.

At any grid point A, XL can be converted to its
counterpart XG in global coordinate system via a rotation
matrix B, namely, XG¼B . XL, where as a function of RA,
B is expressed as [22]

B RAð Þ ¼

cosYAcosFA !sinFA sinYAcosFA

cosYAsinFA cosFA sinYAsinFA

!sinYA 0 cosYA

2

64

3

75 ð7Þ

and vice versa, XL¼B–1 . XG.

∆

∆

Fig. 1. Global (XYZ) and local (xyz) coordinate systems set up for
computing the radiation field in a spherical atmosphere and in a
pseudo-spherical atmosphere. The spherical atmosphere in divided into
N!1 layers with the radii R1 (R1¼RT), R2, R3, y and RN (RN¼RP) for
spherical interfaces from the top to the bottom of the atmosphere.
The OZ axis of the global coordinate system O-XYZ is oriented toward
the Sun and (Y, F) specify the global angular coordinates of a point.
Some grid points (Rn, Yj, Fk) are denoted by black dots. At any grid point
(e.g., point A in the schematic) a local coordinate system A-xyz is set up
where (y, f) are local angular coordinates specifying the diffuse light
direction. In the left half of the figure, a plane-parallel atmosphere is set
up referring to the grid points along the same radial line to compute the
multiple scattering field for the solution to the pseudo-spherical atmo-
sphere. The Cassini camera images of Titan shown below were obtained
at phase angle 94.71.
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To compute radiation field in a pseudo-spherical atmo-
sphere, the multiple scattering field at the set of grid
points along a radial line (say Y¼Yj) is approximated by
the multiple scattering field in a plane-parallel atmo-
sphere oriented perpendicular to the radial line at these
grid points (see Fig. 1). Under this situation, the solar
incidence angle n0¼Yj. To improve the approximation,
the state vector P0 is modified by introducing the prob-
ability of solar beam transmission from the incident point
s0 at the top of atmosphere to a point s at the outer
boundary of a layer inside the atmosphere, namely [2],

T
!

sÞ ¼ exp !
Z s

s0
s s0ð Þds0

% &
ð8Þ

where the extinction coefficient s¼kTr, with kT and r
being the total mass extinction coefficient and the total
mass density, respectively. For a given Fourier compo-
nent, the initial state vector is computed by single
scattering due to extinction in the nth layer, namely

PðmÞ,þ0,c=s Dtn,mi,m0

# $
¼

wi

c Dtn,mi

# $ m0mi

miþm0
T snð Þo0 nð Þ

' 1!exp !Dtn
1
m0
þ

1
mi

' (% &) *MðmÞc=s !mi,m0;n
# $

2
F ð9Þ

for outward radiation and

PðmÞ,!0,c=s Dtn,mi,m0

# $
¼

wi

c Dtn,mi

# $ m0mi

mi!m0
T snð Þo0 nð Þ

' exp !
Dtn

mi

' (
!exp !

Dtn

m0

' () *MðmÞc=s mi,m0;n
# $

2
F ð10aÞ

PðmÞ,!0,c=s Dtn,mi,m0

# $
¼

wi

c Dtn,mi

# $ T snð Þo0 nð Þ

' Dtn exp !
Dtn

mi

' (% &MðmÞc=s mi,m0;n
# $

2
F ð10bÞ

for inward radiation, when miam0 and mi¼m0, respec-
tively, where o0(n) is the SSA of the nth atmospheric
layer, MðmÞc=s mi,m0;n

# $
is the cosine (‘‘c’’) or sine (‘‘s’’) mode

of the mth Fourier component of the phase matrix
describing light scattering from direction m0 to mi, and
F¼[F, 0, 0, 0]T. Decomposing the phase matrix for surface
reflection Msurf into Fourier components MðmÞsurf ,c=s, the
initial state of surface-reflected light is

PðmÞ,þ0,c=s 0,mi,m0

# $
¼ 2wiT sNð ÞM

ðmÞ
surf ,c=s !mi,m0

# $
m0miF ð11Þ

The line integral in Eq. (8) can be broken into a set of
segments in different sub-layers so that the total optical
path can be approximated by summing over the optical
depth in different sub-layers and for nZ2 [21]

T snð Þ * exp !
Xn!1

k ¼ 1

skDsn,k

 !

, ð12Þ

where the length of line segment in kth sub-layer Dsn,k

(see Fig. 1) can be determined via the following equation
after invoking some basic triangular relations,

Dsn,k ¼ R2
k!R2

nsin2n0

! "1=2
! R2

kþ1!R2
nsin2n0

! "1=2
: ð13Þ

For n¼1, T(sn)¼1. When the planet radius RP approaches
infinity the spherical atmosphere tends to be plane-

parallel and T(sn) can be evaluated analytically by
exp(–tn/m0).

After the total radiation field for a plane-parallel atmo-
sphere is obtained by using Eqs. (9)–(11) and Eqs. (1)–(5),
the single scattering contribution needs to be replaced by the
one evaluated in a full spherical atmosphere so that the
inward radiation field in the pseudo-spherical atmosphere is

I!in tnþ1,mj,m0,f!f0

! "
¼ Iss,sph Rnþ1,RT;XGð Þ

þ
Xn

k ¼ 1

½L p!bð Þ)!1½I!in Dtk,mj,m0,f!f0

! "

!I!in,ss Dtk,mj,m0,f!f0

! "
)c Dtk,mj

! "
exp½! tn!tkð Þ=mj)

ð14Þ

and the outward radiation field is

Iþin tn,mj,m0,f!f0

! "
¼ Iss,sph Rn,RT=B;XG

# $

þ
XN

k ¼ n

½L p!bð Þ)!1½Iþin Dtk,mj,m0,f!f0

! "

!Iþin,ss Dtk,mj,m0,f!f0

! "
)c Dtk,mj

! "
exp½! tk!tnð Þ=mj),

ð15Þ

where the following single-scattering field in the plane-
parallel atmosphere

Iin,ss Dtn,uj,u0,f!f0

# $

¼
X1

m ¼ 0

2!d0mð Þ
2wjmj

PðmÞ0,c Dtn,uj,u0
# $

cos m f!f0

# $h

þPðmÞ0,s Dtn,uj,u0
# $

sin m f!f0

# $i
ð16Þ

is replaced by the one evaluated in the full spherical
geometry, namely

Iss,sph R,RT=B;XG
# $

¼
Z :R!RT=B:

0
Jss,sph R ‘ð Þ,XGð Þ

'exp !
Z :R!RT=B:

:R ‘ð Þ!RT=B:
s R ‘0ð Þð Þd‘0

" #
d‘, ð17Þ

where R and XG denote the position and direction respec-
tively where single scattering is calculated, RT/B is the
position vector of the point at the top (RT) or bottom (RB)
of the atmosphere where the line integral starts and (R!RT/

B) is in the direction of solar beam XG, namely Rð‘Þ ¼ RT=Bþ
XG‘ and the single scattering source function, Jss,sph, for
example, is evaluated by

Jss,sph R,XGð Þ ¼
1
4

exp !
Z :R-R0T:

0
s R0ð‘
# $

Þd‘

" #

'sðRÞo0ðRÞM XG,XG,0;R
# $

F ð18Þ

for R in the lit region of the atmosphere, where R0ð‘Þ ¼ R0Tþ
XG,0‘ (R0T is the position vector of the point at the top of the
atmosphere that leads (R!R0T ) to be in the direction of solar
beam XG,0). Since the Stokes vector of the radiation field in
the spherical atmosphere (including the single scattering
calculated by Eq. (17)) is defined with respect to the plane
containing the incident OZ axis and diffuse light direction
while its counterpart in the plane-parallel atmosphere is
defined with respect to the meridian plane in local coordi-
nate system of the grid points, a rotation matrix [L(p!b)]!1

is used in Eqs. (14)–(15) for conversion. Specifically
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L(p!b)¼[1, 0, 0, 0; 0, cos(2b), !sin(2b), 0; 0, sin(2b),
cos(2b), 0; 0, 0, 0, 1] with cos b¼(XG'R) $ (XG'XG,0)/
:XG'R:/:XG'XG,0:.

3. Spherical atmosphere

The SCM-based Picard iteration for computing polar-
ized radiative transfer mainly consists of two steps,
inward and outward recurrence (with boundary condi-
tions applied at the top and bottom of the atmosphere).
Here formalism is given only for inward recurrence since
the same procedure applies to the outward recurrence
with a flip of the recurrence direction.

Starting from a reference point Rn on the outer bound-
ary on the nth layer, the radiation field at the grid point
Rnþ1 on the inner boundary in direction XG (converted
from XL via XG¼B(Rnþ1) . XL) can be expressed as

I! Rnþ1,XGð Þ ¼ I! Rn,XGð ÞT n,XGð ÞþI!ss Rnþ1,Rn;XGð Þ
þI!ms Rnþ1,Rn;XGð Þ ð19Þ

where I!(Rn, XG) is the downward radiation field at Rn in
direction XG (with Rn¼Rnþ1–XG:Rnþ1–Rn:) and, defin-
ing R(‘)¼RnþXG‘ with ‘ being the distance to the
reference point Rn in direction XG, T(n, XG) is the prob-
ability of direct transmission from Rn to Rnþ1 evaluated as

T n,XGð Þ ¼ exp !
Z :Rnþ 1!Rn:

0
s Rð‘ð ÞÞd‘

" #
: ð20Þ

In Eq. (19), the single and multiple scattering contri-
butions are integrals over relevant source functions:

I!ss Rnþ1,Rn;XGð Þ ¼
Z :Rnþ 1!Rn:

0
Jss Rð‘ð Þ,XGÞ

'exp !
Z :Rnþ 1!Rn:

:Rð‘Þ!Rn:
s R ‘0ð ÞÞd‘0ð

+
d‘,

"
ð21Þ

I!ms Rnþ1,Rn;XGð Þ ¼
Z :Rnþ 1!Rn:

0
Jms Rð‘ð Þ,XGÞ

'exp !
Z :Rnþ 1!Rn:

:Rð‘Þ!Rn:
s R ‘0ð ÞÞd‘0ð

+
d‘:

"
ð22Þ

In Eq. (21), the single scattering source functions, Jss, is
expressed as

Jss R,XGð Þ

¼
0, for R in shadowed region,
1
4 T R,XG,0
# $

s Rð Þo0 Rð ÞM XG,XG,0;R
# $

F , for R in lit region,

(

ð23Þ

where T R,XG,0
# $

¼exp !
R :RT!R:

0 s R0ð‘
# $

Þd‘
h i

with R0ð‘Þ ¼
RTþXG,0‘. And the multiple scattering source function in
Eq. (22), Jms, is expressed as

Jms R,XGð Þ ¼
1

4p

Z

4p
sðRÞo0ðRÞM XG,BUX0L;R

# $
I R,BUX0L
# $

dX0L,

ð24Þ

where M(Xj, Xi; R) is the phase matrix describing light
scattering from direction Xi to Xj at R. Since the light
direction is discretized into Gauss quadrature points in
local coordinate system, the integral is performed over X0L
in the above equation.

With an explicit expression of the single-scattering
source term, the line integral Eq. (21) can be computed
through the Gaussian quadrature along the path. The
multiple scattering, namely line integral Eq. (22), is
evaluated by use of Newton–Cotes formulae in closed
form [22] with the knowledge of source terms Jms at the
two endpoints (Rn, XG) and (Rnþ1, XG), namely,

I!ms Rnþ1,Rn;XGð Þ * a1 Dtn,1
# $

Jms Rn,XGð Þþa2 Dtn,2
# $

'Jms Rnþ1,XGð Þ, ð25Þ

where Dtn,1 ¼ s Rnð Þ:Rnþ1!Rn:, Dtn,2 ¼ s Rnþ1ð Þ:Rnþ1!
Rn:, and as derived in [15],

a1 xð Þ ¼
1
x2

x!1þe!x
# $

ð26Þ

and

a2 xð Þ ¼
1
x2

1! 1þxð Þe!x
, +

: ð27Þ

The above formalism (Eqs. (19)–(27)) actually pertains to
an inhomogeneous spherical atmosphere. When spherical-
shell geometry is assumed, the average value of the extinc-
tion coefficient s is used for RnrRrRnþ1 and a1 and a2

have the same arguments Dtn ¼ s: Rnþ1!Rn: [15]. More-
over, the phase matrix and SSA only depend on layer
number. Eq. (25) constitutes a recurrence relation: at the
current iteration the contribution of multiple scattering in a
layer of thickness DRn to the radiance at a point Rnþ1 on the
lower boundary of the nth layer can be updated from
radiance at both outer and inner boundaries of the same
layer derived from the previous iteration. In an inward/
outward recurrence direction, the emergent radiance at the
bottom/top of atmosphere is readily obtained. The iteration
is repeated until convergence is achieved. At each iterative
step, the boundary conditions have to be satisfied, namely
for a point RT at the top of the atmosphere

I! RT,XGð Þ ¼Q! RT,XGð Þ ¼U! RT,XGð Þ ¼ V! RT,XGð Þ ¼ 0

ð28Þ

and for a point with position vector RP at the (depolarizing)
planetary surface,

Iþ RP,XGð Þ ¼
Z

2p
rsurf XG,BUX0L

# $
I! RP,BUX0L
# $

dX0L ð29Þ

where rsurf is the surface reflection function and Qþ(RP, XG)¼
Uþ(RP, XG)¼Vþ(RP, XG)¼0. The symbols ‘‘þ ’’ and ‘‘! ’’
correspond to the outward and inward radiance, respectively.
For a polarizing surface, the surface reflection function
rsurf needs to be replaced by the phase matrix for surface
reflection

Msurf XG,B $X0
# $

¼ L p!i2ð Þrsurf XG,B $X0
# $

L !i1ð Þ ð30Þ

where rsurf is the surface reflection matrix, i1 and i2 are
the two angles rotating the Stokes vector into and out of
the reflection plane, respectively [23], and for n¼1 or 2
the rotation matrix L(p–in)¼L(–in)¼[1, 0, 0, 0; 0, cos(2in),
!sin(2in), 0; 0, sin(2in), cos(2in), 0; 0, 0, 0, 1] [23]. This
way, the Stokes vector of the reflected light is evaluated
by

Iþ RP,XGð Þ ¼
Z

2p
Msurf XG,BUX0L

# $
I! RP,BUX0L
# $

dX0L ð31Þ
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Generally the point characterized by the position vector
Rn in Eq. (25) is not contained by the grid points at the outer
boundary of the nth layer. XG is not contained either in the
set of discretized angular directions in local coordinate
system associated to Rn. Therefore, the source function
Jms(Rn, XG) used in Eq. (25) must be evaluated by convert-
ing OG to O and then interpolating the source function in
discretized local angular directions at the grid points on the
interface R¼Rn. Specifically, for our spherical-shell atmo-
sphere, linear interpolation in three dimensions over (Y, y,
f) is used to get Jms(Rn, OG) for all Stokes components. The
same interpolation is used to get I!(Rn, XG) in Eq. (19). The
inward recurrence is speeded up by using the updated
inward radiation field at R¼Rnþ1 to get the inward
radiance from the next layer at I!(Rnþ2, XG). Using the
pseudo-spherical solution formulated in Section 2.2 as the
initial guess and repeating the inward and outward
recurrence, the whole radiation field throughout the atmo-
sphere converges after a few iterations.

4. Computation

4.1. Setup

In this section, we model polarized radiative transfer
in Titan’s atmosphere. Titan’s radius at its solid surface
is 2576 km and the visible haze in 2008 extended to
500 km above it. The whole atmosphere is divided into 3
major layers as a function of altitude h, namely,
0ohr30 km, 30ohr80 km and 80ohr500 km, due
to the different aerosol properties in these layers [24]. On
such a basis, each major layer is further divided into sub-
layers of optical depth less than 0.0075.

The Descent Imager/Spectral Radiometer (DISR) on the
Huygens probe provides the opportunity to measure
the aerosol and surface properties inside Titan’s atmo-
sphere. Although the measurement was confined to the
landing trajectory, the Titan atmosphere is assumed to be
homogeneous in each sub-layer so that our 2D spherical-
shell model applies. Under this assumption, our model
takes the wavelength-dependent optical depth (Dtn) and
SSA (o0,n) inferred from DISR’s measurement for 3 major
layers [24]:

Dt1ðlÞ ¼ 1:012' 107l!2:339, d Dt1ð Þ ¼ 10%,

o0ð1Þ ¼ 0:970170:02, for h480 km, ð32Þ

Dt2ðlÞ ¼ 2:029' 104l!1:409, d Dt2ð Þ ¼ 15%,

o0ð2Þ ¼ 0:995170:01, for 30ohr80 km, ð33Þ

Dt3ðlÞ ¼ 6:270' 102l!0:9706, d Dt3ð Þ ¼ 15%,

o0ð3Þ ¼ 0:933370:02, for hr30 km, ð34Þ

where l is the wavelength in nm (350olo1600 nm),
d denotes the measurement uncertainty and the SSA
values are specifically for l¼934 nm. In addition,
the phase function of Titan aerosols was tabulated in
[24]. Although Titan’s atmosphere consists of both aero-
sols and gases, the aerosol optical depth dominates by a
large factor and we neglect scattering by gases at
934.8 nm wavelength.

As described in the previous section, the model can
take any surface reflection function that conserves energy
at every incidence angle. However, to use the surface
reflectance (rsurf) obtained from DISR measurement, we
adopt Hapke’s model [25] with parameters derived from
DISR measurements [26]:

rsurf ¼
o0

4p
m0

m0þm PHG g,p!aPð ÞBSH aPð ÞþM m0,m
# $, +

BCB aPð Þ

ð35Þ

where o0 is the SSA, m0 and m are the cosines of incidence
and viewing angles, respectively, in the local coordinate
system of a grid point on the surface, aP is the phase
angle, BSH(aP) accounts for the shadow hiding opposition
effect via peak width hS and amplitude BS0:

BSH aPð Þ ¼ 1þBS0 1þ
1
hS

tan
aP

2

! "% &!1

, ð36Þ

BCB(aP) accommodates the coherent backscatter opposi-
tion effect via hC and BC0:

BCB aPð Þ ¼ 1þ
1
2

BC0 1þ 1!exp !
1
hC

tan
aP

2

! "% &) *'

'
1
hC

tan
aP

2

! "% &!1
!

1þ
1
hC

tan
aP

2

! "% &!2

, ð37Þ

M is the multiple scattering term:

M m0,m
# $

¼ P m0
# $
½HðmÞ!1)þPðmÞ½H m0

# $
!1)

þL½HðmÞ!1)½H m0
# $
!1) ð38Þ

where H(x) is Chandrasekar’s H function [27] and

PðxÞ ¼ 1þ
X1

n ¼ 1

AnbnPnðxÞ ð39Þ

L¼ 1þ
X1

n ¼ 1

A2
nbn ð40Þ

An ¼
!1ð Þ nþ 1ð Þ=2

n
1'3'5':::'n

2'4'6':::' nþ1ð Þ , n¼ odd

0, n¼ even

(
ð41Þ

where bn are the Legendre expansion coefficients of the
phase function,

PHG g,að Þ ¼ 1þ
X1

n ¼ 1

bnðgÞPnðcos aÞ, ð42Þ

and PHG(g, a) is the Henyey–Greenstein (HG) function
[28],

PHG g,að Þ ¼
1!g2

½1þg2!2gcos a)3=2
, ð43Þ

where a is the scattering angle (a¼p!aP). Hence,
bn(g)¼(2nþ1)gn. To conform to the model assumption of
a homogeneous surface and utilize the DISR measurement
results, the photometric properties of the surface for
l¼930 nm which was measured near the landing site of
Huygens probe were used for l¼934.8 nm and the whole
surface. DISR data fitting gives o0¼0.60770.004,
hS¼0.03970.045, BS0¼1.00, and g¼0.02870.070, and
additionally hC¼0.01 and BC0¼0.41 [26]. Noticing that
Hapke’s model might not conserve energy under some
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situations [29], energy conservation was checked and
found not to be violated at these fitting parameters.

4.2. Model verification: comparison of numerical models

To verify our new algorithm, we compared results for a
Titan atmosphere-like case against a backward Monte
Carlo code where each scattering event is modeled from
the analytic phase function (The backward Monte Carlo

code was designed by us according to [30,31] for polarized
radiative transfer in a spherical atmosphere). Titan’s
atmosphere is a more severe test case than the terrestrial
atmosphere because of the large extension of the haze
(500 km above the surface) relative to the radius of the
solid surface (2576 km). Instead of interpolating the tabu-
lated values of the phase function of Titan’s aerosols
in [24], for verification purposes, we used a double
Henyey–Greenstein function (DHG) parameterized by two

Fig. 2. Comparison of intensity (I) computed by hybrid method (HM) and backward Monte Carlo method (MCM) in the principal plane, namely with
f¼01 (with negative viewing angles along x-axis) as well as 1801 (with positive viewing angles).

Fig. 3. Same as Fig. 2 but for the comparison of Stokes parameter Q.

F. Xu et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 117 (2013) 59–70 65



asymmetry factors ga, gb, and a fraction factor fa, namely,

P11ðaÞ ¼ f aPHG ga,a
# $

þ 1!f a

# $
PHG gb,a

# $
: ð44Þ

Using the DHG, the phase function and the sampling of
the new direction in the Monte Carlo method can be
evaluated analytically and the sampling accuracy of the
backward Monte Carlo method is thus guaranteed.
To speed up the Monte Carlo computation and test
whether the surface reflection is properly built into the
model, we let the surface reflection have more

contribution by using the smallest aerosol optical depth
computed from Eqs. (32)–(34) across the wavelength
range, which is 1.43 for l¼1600 nm, and then dividing
it by a scaled factor 2.9 so that total aerosol optical depth
is further reduced to 0.5. The aerosols contained by Titan’s
haze have a highly-peaked phase function while most
numerical methods, including Markov chain and Picard
iteration have difficulty in efficient RT computation in
their present form. Therefore d-truncation strategies,
originally proposed by Potter [32] and later designed into
different forms (e.g. d-fit [33], d-M without [34,35] or

Fig. 4. Same as Fig. 2 but for the comparison of I in an off-principal plane, namely f¼451 (with negative viewing angles along x-axis) as well as 2251
(with positive viewing angles).

Fig. 5. Same as Fig. 4 but for the comparison of Stokes parameter Q.
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with [36] intensity fluctuation correction, etc.) are widely
applied by cutting off the strong forward peak and
compensating the truncation by adjusting the SSA and
the aerosol optical depth. To avoid the small errors
introduced by d-truncation, less forward-peaked HG func-
tions were set for 3 aerosol layers in our testing cases,
namely, ga(1)¼0.40, gb(1)¼!0.10, ga(2)¼0.30, gb(2)¼
!0.05, ga(3)¼0.20, gb(3)¼!0.025, and fa(1)¼ fa(2)¼
fa(3)¼0.5. This way, d-truncation is unnecessary and both
methods give ‘‘natural’’ results without artificial adjust-
ment of input parameters. Other scattering matrix entries
are derived by assuming the ratio Pij/P11 of aerosols to be
similar to that of Rayleigh scattering [37,38]:

P22ðaÞ=P11ðaÞ ¼ 1 ð45Þ

P33ðaÞ=P22ðaÞ ¼ 2cosa= 1þcos2a
# $

ð46Þ

P12ðaÞ=P11ðaÞ ¼ !psin2a= 1þcos2a
# $

ð47Þ

P34ðaÞ=P11ðaÞ ¼ 0 ð48Þ

where p is a scaling factor for polarization. The phase
matrix is then obtained by multiplying the scattering
matrix by two rotation matrices, namely [23],

M X,X0;n
# $

¼ L p!i2ð ÞP acos XUX0
# $

;nÞL !i1ð Þ:
#

ð49Þ

Moreover, the angular space for the multiple scattering
source function integral is discretized into 16 uniformly-
spaced viewing angles in the half planes 01ryr901 and
901ryr1801, and 27 azimuthal angles in the range
0ofr3601. In addition, the domain 0rYr1801
is divided into 181 radial lines. To generate a high
polarization of aerosols, p is set to be unity as for Rayleigh
scattering. Together with the setting P44(a; n)/P33(a; n)¼1,
the basic relationship of scattering matrix elements at the
forward and backward scattering angles and the Cloude
criterion [29] are fulfilled so that the constructed scatter-
ing matrix is physically sensible.

Assuming solar flux pF¼p and setting the SSA
o0(1)¼0.92, o0(2)¼0.94 and o0(3)¼0.96, Figs. 2 and 3
give respectively the comparison of radiance intensity I
and Stokes parameter Q as a function of the local viewing
angle (y) computed by the hybrid method (HM) and the
backward Monte Carlo method (MCM) in the principal
plane (with local azimuthal angles f¼01 and 1801).
Three Picard iterations were used to get the HM results.
The same comparison is made in Figs. 4 and 5 for off-
principal planes (with local azimuthal angles f¼451 and
2251). The radial and global angular coordinates of the
point where radiation fields are displayed are R¼RT (top
of atmosphere) and Y¼01, 451, 901, 1351, and Y¼1801,
respectively (Y¼01 and Y¼1801 correspond to the direc-
tions toward and opposite the Sun, respectively). Setting
the MCM history count to 106, the backward Monte Carlo
intensity I and Stokes parameter Q computed for Y¼01,
451 and 901 and yo701 have uncertainties less than
+0.5% and +5%, respectively. For both I and Q, it can be

Fig. 6. I/F measured by ISS measured by ISS. The edge of Titan’s solid
surface is denoted by the white circle. In this and subsequent images
solar illumination is from the bottom of the image.

Fig. 7. 9Q9/F measured by ISS.

Fig. 8. I/F modeled by HM.
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observed that the calculation by the HM agrees well with
that of the MCM. The uncertainties for the Monte Carlo
prediction, which were not plotted in Figs. 4 and 5 cover
the deviation of the two methods at most angles. More-
over, it can be observed in Figs. 2–5 that, except for a
directly backward scattering peak at y¼01, both I and 9Q9
have a general increase until y approaches the transition
angle yt¼asin(RP/RT)¼56.71, where the line of sight is
tangential to the solid surface. Beyond yt, with the
decrease of optical depth both I and 9Q9 decrease to zero
at y¼90.01. Moreover, at the same local viewing angle 9y9,
the values of I and 9Q9 at positive y are larger than their
counterparts at negative y because the viewing ray
corresponding to a negative y angle partly traverses a

region shadowed by the planet so that less illuminated
atmosphere contributes to the radiation field.

4.3. Model validation: real and simulated image comparison

To illustrate how the code described here may be used
to retrieve aerosol optical properties we simulated light
scattered from Titan’s haze and compared the model
result with the images obtained by the ISS (Imaging
Science Subsystem) instrument on the Cassini spacecraft.
Photopolarimetric measurements of the limb intensity
can provide data to derive vertical profiles of haze proper-
ties and so we wish to accurately model the limb radiance
and polarization as well as the radiance and polarization
closer to the nadir.

We chose two images of Titan (IDs W1604461118 and
W1604461260) from day 309 of 2008. At that time Titan’s
haze could be seen by the ISS cameras to extend to about
500 km altitude. Both images were taken with the CB3
filter (central wavelength near 934 nm). At this wave-
length the haze optical thickness is low enough to
transmit surface contrast, but greatly diminished relative
to the intrinsic contrast. As illustrated in Fig. 1, the phase
angle of the ISS camera was 94.71 when the measure-
ments were made. Image W1604461118 was coupled to
the IRP0 polarizing filter (passes light with the electric
vector in the vertical direction in the image plane) and
W1604461260 was coupled to the IRP90 filter. Both filters
transmit more than 90% of the light whose electric vector
oscillates in the plane parallel to the polarizing direction
and less than 1% of the perpendicular electric vector is
transmitted. Together these can be combined to yield
intensity and Stokes parameter 9Q9 defined with respect
to the image coordinates (see [39]). The image was
calibrated using the CISSCAL software [39]. As a result,
Fig. 6 shows the image of I/F where I is the reflectedFig. 9. 9Q9/F modeled by HM.
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Fig. 10. Separate view of the measured and modeled I/F at the pixel rows (r) 300, 350, 400, 450, and 500.
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intensity and pF is the solar flux and Fig. 7 shows the
image of 9Q9/F.

As described in Section 4.1, the aerosol properties and
surface reflectance derived from DISR measurements
[24,26] are used to simulate the images. With the setting
p¼0.98 (p is the only free parameter in our model), the
phase matrix is constructed from Eqs. (45)–(48) and
P44(a; n)/P33(a; n)¼1. The scale height of the outmost
layer is inferred to be 65 km according to DISR measure-
ments (with an uncertainty of 20 km) [23]. The modeled
I/F and 9Q9/F images are illustrated in Figs. 8 and 9.
Intensity along several pixel rows from Fig. 10 indicates
increasing deviation close to the limb. Near the sub-solar

point at the limb however, the modeled and measured
9Q9/F have better agreement, as indicated by Fig. 11.
Differences between modeled I/F and 9Q9/F can be traced
to Titan’s haze being not perfectly symmetric and the
surface contrasts are not modeled. Moreover, the mea-
sured aerosol and surface properties along the DISR
landing trajectory may not hold at locations far from the
landing site and we have not attempted to fit all latitudes
and altitudes by optimizing parameters. As a supplement,
Fig. 12 gives the modeled image degree of polarization
(DOLP) which is defined to be (Q2þU2þV2)1/2/I. Though
DOLP is not measured by ISS, it can be well represented by
the measured results of 9Q9/I since 9DOLP-9Q9/I9 is found
to be less than 1% in Fig. 13. This is due to the very small
contribution of U when the polarizers are aligned parallel
and perpendicular to the scattering plane.

5. Summary and outlook

We have developed a hybrid method to compute the
Stokes vector field throughout a vertically extended
spherical atmosphere. The method starts with a Markov
chain computation of the Stokes vector field inside a
pseudo-spherical atmosphere. The new forward model
was tested against the backward Monte Carlo method for
a synthetic atmosphere with different aerosol properties
in three layers, resulting in excellent agreement for both
intensity I and Stokes parameter Q. With the knowledge
of Titan’s aerosol and surface properties derived from
DISR measurements, the images of I/F and 9Q9/F were
modeled and compared to the real ones measured by ISS
at 934.8 nm. To reduce the deviation of the modeled I/F
and 9Q9/F and the measured ones, better knowledge of
aerosol and surface properties needs to be obtained,
which forms the target of our future work. Specifically,
we will use the limb-viewing radiance and Q for aerosol
retrievals where the contribution of surface is small. With
improved knowledge of aerosol properties, the surface
can be better retrieved with the aid of the spherical
RT model.
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Fig. 11. Same as Fig. 10 but for 9Q9/F comparison.

Fig. 12. Degree of linear polarization (%) in the lower half image plane
modeled by HM.

Fig. 13. 9DOLP-9Q9/I9'100 in the lower half image plane modeled by
HM.
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